
1228. Add All 
 

The cost of adding two numbers equals to their sum. For example to add 1 and 10 

cost 11. The cost of addition 1 and 2 is 3. We can add numbers in several ways: 

 1 + 2 = 3 (cost = 3), 3 + 3 = 6 (cost = 6), Total = 9 

 1 + 3 = 4 (cost = 4), 2 + 4 = 6 (cost = 6), Total = 10 

 2 + 3 = 5 (cost = 5), 1 + 5 = 6 (cost = 6), Total = 11 

 

We hope you understood the task. You must add all numbers so that the total cost 

of summation will be the smallest. 

1 2 3

3

6
3

6

9

1 2 3

64
6

10

4

321

5

6
5

6

11Total cost Total cost Total cost
 

 

 

Input. First line contains positive integer n (2 ≤ n ≤ 105).  Second line contains n 

nonnegative integers, each no more than 105. 

 

Output. Print the minimum total cost of summation. 

 

Sample input Sample output 
4 

1 2 3 4 

19 

 

Algorithm analysis 

Add the smallest two numbers each time. Then the total cost of summation for all n 

integers will be the minimum. Since numbers can be repeated, will store them in a 

multiset. 
 

Example 

To minimize the cost of addition, add the numbers in the following order: 

1. Add 1 and 2, sum is 3. Cost of addition is 3. 

2. Add 3 and 3, sum is 6. Cost of addition is 6. 

3. Add 4 and 6, sum is 10. Cost of addition is 10. 

  

1 2 3 4 3 3 4

3 6

4 6

10
 

Total cost of summation is 3 + 6 + 10 = 19. 



 

Algorithm realization 

Store the input numbers in the multiset s (numbers can be repeated). The two 

smallest numbers are always at the beginning of the multiset. 
 

multiset<long long> s; 

 

Read the amount of numbers n. Read the sequence of terms and push them into the 

multiset s. 
 

scanf("%lld",&n); 

s.clear(); 

for(i = 0; i < n; i++) 

  scanf("%lld",&num),s.insert(num); 

 

Accumulate the cost of additions in the variable res. Until there is only one number 

left (the size of the multiset s is greater than 1), add the two smallest numbers and insert 

their sum into s. The cost of adding numbers a and b is a + b. 
 

res = 0; 

while(s.size() > 1) 

{ 

  a = *s.begin(); s.erase(s.begin()); 

  b = *s.begin(); s.erase(s.begin()); 

  s.insert(a + b); 

  res += a + b; 

} 

 

When there is only one number left in the multiset, print the answer – the value of 

the res variable. 
 

printf("%lld\n",res); 

 

Algorithm realization – priority queue 

Declare a priority queue pq, at the beginning of which there is a smallest element. 
 

priority_queue<long long, vector<long long>, greater<long long> > pq; 

 

Read the amount of numbers n. Read a sequence of terms and insert them into 

priority queue pq. 
 

scanf("%lld",&n); 

for(res = i = 0; i < n; i++) 

  scanf("%lld",&num), pq.push(num); 

 

Accumulate the cost of additions in the variable res. Until there is one number left 

(the size of the queue pq is greater than 1), add the two smallest numbers and insert their 

sum into pq. The cost of adding numbers a and b is a + b. 
 

while(pq.size() > 1) 

{ 

  a = pq.top(); pq.pop(); 

  b = pq.top(); pq.pop(); 



  pq.push(a + b); 

  res += a + b; 

} 

 

When there is only one number left in the queue, print the answer – the value of 

the variable res. 
 

printf("%lld\n",res); 

 

 

7444. Graph game 
 

Given graph, with 2n vertices and m edges. On every vertex and edge written an 

integer number. Serik and Zhomart were bored and invented the game on graph. The 

rules of this game are the following: 

 Serik starts the game and they alternate turns. 

 There are exactly n turns for each player. 

 In every turn Player must choose a non-chosen vertex. 

 The score of the player is the sum of numbers written in his chosen vertices, 

plus the sum of numbers written in edge, where both vertices of the edge are 

chosen by him. 

 Every player tries to maximize the difference between his and opponent's 

score. 

 Of course, Serik and Zhomart are very smart. 

 

Input. The first line contains integers n, m (1 ≤ n, m ≤ 105). 

The second line contains integers a1, a2, . . . , a2n (1 ≤ ai ≤ 1000) – numbers on 

vertices. 

Next m lines contain three integer numbers u, v, w (1 ≤ u, v ≤ n, 1 ≤ w ≤ 1000) – 

vertices u and v are connected, w is number on this edge. Only restriction for graph is: 

no loop edge. 

 

Output. Print the difference between Serik’s score and Zhomart’s score. 

 

Sample input Sample output 
3 3 

2 3 2 2 3 1 

6 1 3 

4 3 2 

1 2 1 

1 

 

Algorithm analysis 

Let the original graph contains an edge (u, v) of weight w, and the numbers au and 

av are written on the vertices: 



u v
w

au av

 
Construct a new graph in which each such edge will be replaced by 

u v

au + w/2 av + w/2 

 
We transferred the edge weight to the vertex weights. If Serik and Zhomart start to 

play on the new graph, then the difference between the scores for the optimal game will 

be the same as on the original graph. Indeed, if vertex u is chosen by one of the guys, 

and vertex v by the other, then the difference between the number of received points 

will remain the same: 

 (av + w / 2) – (au + w / 2) = av – au 

If both vertices are chosen by one of the game participants, then he will receive  

 (av + w / 2) + (au + w / 2) = av + au + w 

points. That is, he will receive the numbers assigned to the vertices on the original 

graph plus the weight of the edge. 

 

The optimal play on the new graph is greedy. Each of the participants on his turn 

must choose a vertex with the maximum value assigned to it. 

 

Example 

Consider the graph shown in the example. Let’s construct a new graph for it. 

1 2

6

5 4

3

3

1

2

2 3

2

23

1

1 2

6

5 4

3

4 3.5

3

33

2.5

 
 

The first player will choose the vertices: 1, 3, 5 with weight 4 + 3 + 3 = 10. 

The second player will choose the vertices: 2, 4, 6 with weight 3.5 + 3 + 2.5 = 9. 

The difference between Serik’s score and Zhomart’s score is 10 – 9 = 1. 

 

Algorithm realization 

Store the numbers at the vertices of the graph in the array a. 
 

#define MAX 200001 

double a[MAX]; 

 

Read the input data. 
 

scanf("%d %d", &n, &m); 



n += n; 

for (i = 1; i <= n; i++) 

  scanf("%lf", &a[i]); 

 

Construct a new graph. 
 

for (i = 1; i <= m; i++) 

{ 

  scanf("%d %d %d", &u, &v, &w); 

  a[u] += w / 2.0; 

  a[v] += w / 2.0; 

} 

 

Sort the array a in descending order. 
 

sort(a + 1, a + n + 1, greater<double>()); 

 

Simulate the game – at each move the participant chooses the vertex with the 

maximum value. 
 

double res = 0; 

for (i = 1; i <= n; i++) 

  if (i & 1) res += a[i]; 

  else res -= a[i]; 

 

Print the answer. 
 

printf("%lld\n", (long long)res); 

 
 

1591. Shoemaker problem 
 

Shoemaker has n jobs (orders from customers) which he must make. Shoemaker 

can work on only one job in each day. For each i-th job, it is known the integer Ti, the 

time in days it takes the shoemaker to finish the job. For each day before finishing the i-

th job, shoemaker must pay a fine of Si cents. Your task is to help the shoemaker, 

writing a program to find the sequence of jobs with minimal total fine. 

 

Input. Consists of multiple test cases. The first line of each test case contains the 

number of jobs n (1  n  1000), after which n lines contain the values of Ti (1  Ti  

1000) and Si (1  Si  10000). 

 

Output. For each test case print in a separate line the sequence of jobs with 

minimal fine. If multiple solutions are possible, print the lexicographically first. 

 

Sample input Sample output 
4 

3 4 

1 1000 

2 2 

2 1 3 4 



5 5 

 

 

Algorithm analysis 

Consider two jobs with characteristics T1, S1 and T2, S2. 

T1 T2

S1  
S2  

S1 * T1

S2 * (T1 + T2)

T1T2

S2  
S1

S2 * T2

S1 * (T1 + T2)
 

If the first job is performed first, and then the second one, the fine is 

S1 * T1 + S2 * (T1 + T2) 

If the second job is performed first, and then the first one, the fine is  

S2 * T2 + S1 * (T1 + T2) 

Consider the condition when the fine for performing the jobs in order 1, 2 is better 

than when performing the jobs in order 2, 1: 

S1 * T1 + S2 * (T1 + T2) < S2 * T2 + S1 * (T1 + T2) 

Let's open the brackets and simplify the expression: 

S2 * T1 < S1 * T2 

Or the same as 

2

2

1

1

S

T

S

T
 . 

Now let we have n jobs. If there are i-th and j-th jobs for which Ti / Si > Tj / Sj, 

then by swapping them in the sequence of execution, we will reduce the total amount of 

the fine. Thus, to minimize the fine, the jobs should be sorted by non-decreasing ratio of 

the time of their execution to the amount of the fine. 

In case of equality of the ratio (Ti / Si = Tj / Sj), the jobs should be sorted in 

ascending order of their numbers. 

 

Example 

Sort the jobs according to the non-decreasing ratio of their execution time to the 

amount of the fine: 

1

1000

3

4

2

2

5

5

Ti

Si

2 1 3 4
job 

number

 

5

5

2

2

4

3

1000

1
  

We obtain, respectively, the optimal order of performance of the jobs indicated in 

the sample. The third and the fourth jobs have the same ratio (2/2 = 5/5), so we arrange 

them in ascending order of job numbers. 



 

Algorithm realization 

Information about jobs is stored in the array jobs, which elements are vectors of 

length 3. After reading the data, jobs[i][0] contains the execution time of the i-th job Ti, 

jobs[i][1] contains the value of the penalty Si, and jobs[i][2] contains job number i. 
 
vector<int> j(3,0); 

vector<vector<int> > jobs; 

 

Sorting function. Comparison 
]1[

]1[

]0[

]0[

b

a

b

a
  is equivalent to a[0] * b[1] < b[0] * a[1]. 

If the ratios a[0] / b[0] and a[1] / b[1] are the same, then job with a lower number should 

follow earlier. Therefore, in this case, it is necessary to compare the numbers of jobs 

that are stored in a[2] and b[2]. 
 

int lt(vector<int> a, vector<int> b) 

{ 

  if (a[0] * b[1] == b[0] * a[1]) return a[2] < b[2]; 

  return a[0] * b[1] < b[0] * a[1]; 

} 

 

The main part of the program. Read the input data. Fill the array jobs. 
 

while(scanf("%d",&n) == 1) 

{ 

  jobs.clear(); 

  for(i = 1; i <= n; i++) 

  { 

    scanf("%d %d",&j[0],&j[1]); j[2] = i; 

    jobs.push_back(j); 

  } 

 

Sort the jobs according to the comparator lt. 
 

  sort(jobs.begin(),jobs.end(),lt); 

 

Print the result as required in the problem statement. 
 

  for(i = 0; i < n; i++) 

    printf("%d ",jobs[i][2]); 

  printf("\n"); 

} 

 

 

1592. Bridge 
 

n people come to a river in the night. There is a narrow bridge, but it can hold only 

two people at a time. They have one torch and, because it's night, the torch has to be 

used when crossing the bridge. The movement across the bridge without a torch is 

prohibited. 



Each person has a different crossing speed; the speed of a group is determined by 

the speed of the slower member. Your job is to determine a strategy that gets all n 

people across the bridge in the minimum time. 

 

Input.  Consists of multiple test cases. The first line of each test case contains the 

number of people n (n ≤ 103), and the second line gives the sequence of n numbers – the 

crossing times for each of the people. Nobody takes more than 104 seconds to cross the 

bridge. 

 

Output. For each test case print the next information. The first line must contain 

the total number of seconds required for all n people to cross the bridge. The following 

lines give a strategy for achieving this time. Each line contains either one or two 

integers, indicating which person or people form the next group to cross. Each person is 

indicated by the crossing time specified in the input. Although many people may have 

the same crossing time the ambiguity is of no consequence. Note that the crossings 

alternate directions, as it is necessary to return the flashlight so that more may cross. If 

more than one strategy yields the minimal time, any one will do. 

 

Sample input Sample output 
4  

1 2 5 10 

3 

1 2 3 

17 

1 2 

1 

5 10 

2 

1 2 

6 

1 2 

1 

1 3 

 

 

Algorithm analysis 
Sort the time it takes people to cross the river in ascending order. Let ti be the time 

of crossing the river by the i - th person (t1  t2  …  tn). Consider how one, two, or 

three people should cross the bridge. For n = 1 and n = 2, the optimal speed of crossing 

the river, respectively, is t1 and t2 = max(t1, t2) (the speed of movement of two people is 

equal to the speed of the slow one). In the case of three people (n = 3), the first and 

second go to the other side, the fastest (first) comes back with a lantern and transfers the 

third. Thus, the optimal time to cross the river is t1 + t2 + t3. 



t1, t2, t3

t1, t2

t2

t1

t1

t1, t3

t3

t1 + t2 + t3

 
 

Consider the case when n > 3. Let A  B  …  Y  Z be the people sorted by time 

of crossing the bridge in increasing order (A is the fastest, Z is the slowest). Let J be the 

person with whom Z moves. If J stays on the other side and never returns back over the 

bridge, then it is optimal to choose it equal to Y. If J returns, then it is optimal to choose 

it as the fastest, that is, A. Thus Z can cross the bridge either with Y or A. 

Y, Z

tZ
Y, Z

A, Z

tZ
Z

A

tA  
Compute the passage times of the two slowest people (Y and Z) according to these 

two strategies. 

1. Z goes with Y. But then before that there must be somebody who will return the 

lantern, for example K. This K also had to be taken to the other side in order to return 

the lantern, and give it to Y and Z. Let it be L. Thus, K and L must return. To minimize 

the time, the two fastest should be selected as K and L, that is, A and B. The passage 

time for Y and Z is tA + 2tB + tZ. 

Y, Z

tZ
Y, Z

A

tA

A, B

tB
B

A, Y, Z

A, B, Y, Z

B

tB
A, B

 
2. Z crosses the bridge together with A, then A returns. Then A crosses the bridge 

with Y and A returns. To go to another side of the river for Y and Z takes 2tA + tY + tZ 

time. 



A, Y

tY
Y, Z

A

tA

A, Z

tZ
Z

A, Y

A, Y, Z

A

tA
A

 
In both cases, only two slowest people cross the bridge. The strategy (first or 

second) is chosen depending which of the values (tA + 2tB + tZ or 2tA + tY + tZ) is less. If 

initially n people should cross the bridge, then n – 2 people must do it recursively. 

 

Example 

Sort the times of crossing the bridge: 1, 2, 5, 10. Here tA = 1, tB = 2, tY = 5, tZ = 10. 

The passage time of the two slowest people according to the first and second strategies 

are respectively equal 

 tA + 2tB + tZ = 1 + 2 * 2 + 10 = 15;  

 2tA + tY + tZ = 2 * 1 + 5 + 10 = 17; 

Since the first value is less, then Z should go with Y. Z with Y cross the bridge in 

time 15, after which it remains to go for A and B to the other bank. This is done in time 

max{tA, tB} = 2. 

The total time to cross the bridge is 15 + 2 = 17. 

5, 10
10

5, 10

1
1

1, 2
2

2

1, 5, 10

1, 2, 5, 10

2

2
1, 2

1, 2
2

1, 2, 5, 10
 

 

Algorithm realization 
Array m stores the time of people to cross the river. 
 

int m[1001]; 

 

Function go(n, visible) returns the optimal time in which n people can cross the 

river. The variable visible = 1, if the moving strategy itself should be printed, and visible 

= 0 otherwise. 
 

int go(int n,int visible) 

{ 

  int First, Second, Best; 

 



One person crosses the river. 
 

  if (n == 1) 

  { 

    if (visible) printf("%d\n",m[0]); 

    return m[0]; 

  } else 

 

Two people cross the river. 
 

  if (n == 2) 

  { 

    if (visible) printf("%d %d\n",m[0],m[1]); 

    return m[1]; 

  } else 

 

Three people cross the river. 
 

  if (n == 3) 

  { 

    if (visible)  

    { 

      printf("%d %d\n",m[0],m[1]); 

      printf("%d\n",m[0]); 

      printf("%d %d\n",m[0],m[2]); 

    } 

    return m[0] + m[1] + m[2]; 

  }; 

 

Compute the optimal time First and Second for the first and the second strategies 

described above. 
 

  First = m[0] + 2 * m[1] + m[n-1]; 

  Second = 2 * m[0] + m[n-2] + m[n-1]; 

  Best = (First < Second) ? First : Second; 

  if (visible)  

  { 

    if (Best == First) 

    { 

      printf("%d %d\n",m[0],m[1]); 

      printf("%d\n",m[0]); 

      printf("%d %d\n",m[n-2],m[n-1]); 

      printf("%d\n",m[1]); 

    } else 

    { 

      printf("%d %d\n",m[0],m[n-2]); 

      printf("%d\n",m[0]); 

      printf("%d %d\n",m[0],m[n-1]); 

      printf("%d\n",m[0]); 

    } 

  } 

 

Recursively compute the optimal strategy for the remaining n – 2 people. 
 

  return Best + go(n-2,visible);   

} 



 

The main part of the program. Read the number of test cases, read the time it takes 

for people to cross the bridge into array m. 
 

while(scanf("%d",&n) == 1) 

{ 

  for(i = 0; i < n; i++) scanf("%d",&m[i]); 

 

Sort the times of crossing the river in ascending order.  
 

  sort(m,m+n); 

 

Run function go with parameter visible = 0, that returns the optimal river crossing 

time. Print it, and then run function go again with parameter visible = 1, that prints the 

sequence of movements.  
 

  res = go(n,0); 

  printf("%d\n",res); 

  res = go(n,1); 

} 

 

 

1599. Dynamic frog 
 

With the increased use of pesticides, the local streams and rivers have become so 

contaminated that it has become almost impossible for the aquatic animals to survive. 

Frog Fred is on the left bank of such a river. n rocks are arranged in a straight line 

from the left bank to the right bank. The distance between the left and the right bank is d 

meters. There are rocks of two sizes. The bigger ones can withstand any weight but the 

smaller ones start to drown as soon as any mass is placed on it. Fred has to go to the 

right bank where he has to collect a gift and return to the left bank where his home is 

situated. 

He can land on every small rock at most one time, but can use the bigger ones as 

many times as he likes. He can never touch the polluted water as it is extremely 

contaminated. 

Can you plan the itinerary so that the maximum distance of a single leap is 

minimized? 

 

Input. The first line is the number of test cases t (t < 100). Each case starts with a 

line containing two integers n (0 ≤ n ≤ 100) and d (1 ≤ d ≤ 109). The next line gives the 

description of the n stones. Each stone is defined by s-m. s indicates the type Big (B) or 

Small (S) and m (0 < m < d) determines the distance of that stone from the left bank. 

The stones will be given in increasing order of m. 

 

Output. For each test case print the case number followed by the minimized 

maximum leap. 

 

Sample input 1 Sample output 1 



3 

1 10 

B-5 

1 10 

S-5 

2 10 

B-3 S-6 

Case 1: 5 

Case 2: 10 

Case 3: 7 

  

Sample input 2 Sample output 2 
1 

6 50 

S-2 B-14 S-20 S-26 B-38 S-43 

Case 1: 18 

 

Algorithm analysis 

Obviously, on the way back, the frog can use all the stones on its way. We need to 

develop a strategy for moving the frog from the left bank to the right. We’ll assume that 

the left and right banks are large stones, and initially the frog is on the leftmost stone. 

Now we will replace each large stone with two small ones located in the same place. 

This can be done since it is obvious that the frog will use any large stone no more than 

twice. Since now we have a sequence of only small stones, we will formulate an 

algorithm for the frog’s movement: when moving from the left to the right bank, it must 

jump over one stone every time – this is the principle of the greedy approach. 

 

Example 

Cnsider the second test case. The crossing contains n = 6 stones, the distance 

between the banks is d = 50. The left and right banks are represented by large stones. 

The array and the movement of the frog along it is as follows. 

0 0 2 14 14 20 26 38 38 43 50 50

2 12 12 12 12

7518714

 
 

Algorithm realization 

Read the input data. 
 

scanf("%d\n",&tests); 

for(t = 1; t <= tests; t++) 

{ 

  scanf("%d %d\n",&n,&d); 

  memset(m,-1,sizeof(m)); 

 

The left bank is one large stone. Replace it with two small ones. 
 

  m[0] = m[1] = 0; 

 



Read the information about stones and store in the m array. Put each large stone 

into the array twice, each small stone put only once. 
 

  for(ptr = 2, i = 0; i < n; i++) 

  { 

    do {scanf("%c",&letter);} while (letter == ' '); 

    scanf("-%d",&s); 

    if (letter == 'B') {m[ptr] = m[ptr+1] = s; ptr += 2;} 

    else {m[ptr] = s; ptr++;} 

  } 

 

Represent the right bank with one large stone. Replace it with two small ones. 
 

  m[ptr] = m[ptr+1] = d;  

  ptr++; 

 

  scanf("\n"); 

 

Move from the leftmost stone to the rightmost one, jumping over one. We are 

looking for the maximum differences between the i-th and the (i + 2)-nd stones. 
 

  for(dist = 0, i = 2; i < ptr; i += 2) 

    if (m[i] - m[i-2] > dist) dist = m[i] - m[i-2]; 

 

Decrease the value of i by 1. Now we move from right to left along neighboring 

stones that have odd numbers (stones with even numbers drowned when the frog moved 

to the right bank). 
 

  for(i--; i >= 2; i -= 2) 

    if (m[i] - m[i-2] > dist) dist = m[i] - m[i-2]; 

 

Print the answer. 
 

  printf("Case %d: %d\n",t,dist); 

} 

 
 

1593. Elegant permuted sum 
 

You will be given n integers {a1, a2, …, an}. Find a permutation of these n integers 

so that summation of the absolute differences between adjacent elements is maximized. 

We will call this value the elegant permuted sum. 

Consider the sequence {4, 2, 1, 5}. The permutation {2, 5, 1, 4} yields the 

maximum summation. For this permutation sum = |2 – 5| + |5 – 1| + |1 – 4| = 3 + 4 + 3 = 

10. Of all the 24 permutations, you won't get any summation whose value exceeds 10. 

  

Input. The first line is the number of test cases t (t < 100). Each case consists of a 

line that starts with n (1 < n < 51) followed by n non-negative integers. None of the 

elements of the given permutation will exceed 1000. 

 



Output. For each test case print the case number followed by the elegant permuted 

sum. 

 

Sample input Sample output 
3 

4 4 2 1 5 

4 1 1 1 1 

2 10 1 

Case 1: 10 

Case 2: 0 

Case 3: 9 

 

Algorithm analysis 
Sort the numbers of the input sequence a. Create a new array v, where we’ll 

construct the required permutation. Initially put into it the minimum and maximum 

elements of the sequence a (and, accordingly, remove these elements from a). We’ll 

compute the elegant sum in the variable s. Initialize s = | v[0] – v[1] |. 

 

As long as a is not empty, choose greedily the best choice among the following 

four possibilities: 

1. The smallest element of the current array a is placed at the start of array v. 

2. The smallest element of the current array a is placed at the end of array v. 

3. The largest element of the current array a is placed at the start of array v. 

4. The largest element of the current array a is placed at the end of array v. 

vamin

v amin

vamax

v amax

 
For each case, recompute the new value of s. We make the choice for which the 

new value of s will be the largest. For each test, print the value of s as the answer. 

 

Since a and v are dynamically updated, use deques as containers. 

 

Example 

Consider how the algorithm works for the first test case. Sort the array: 

a = {1, 2, 4, 5} 

Step 1. Push the smallest and the largest elements into array v: v = {1, 5}. Remove 

these elements from a, whereupon a = {2, 4}. 

Append the smallest and the largest elements of array a to the right and to the left 

of array v. The largest value of the sum is reached, for example, on the array {1, 5, 2}. 



1 5

1 52

1 5 2

1 54

1 5 4

|2 – 1| + |5 – 1| = 5

|5 – 1| + |2 – 5| = 7

|1 – 4| + |5 – 1| = 7

|5 – 1| + |4 – 5| = 5
 

 

Step 2. v = {1, 5, 2}, a = {4}. There is one element left in the a array. Append it to 

the right and to the left of array v. Recalculate the sums. 

1 2

1 54

1 5 4

|1 – 4| + |5 – 1| + |2 – 5|  = 10

1 5

2

2 |5 – 1| + |2 – 5| + |4 – 2| = 9
 

The resulting sum is 10, it is obtained, for example, for permutation  

{4, 1, 5, 2} 

 

Algorithm realization 
Declare the deques. 
 

deque<int> a, v; 
 

Read the number of test cases tests. 
 

scanf("%d", &tests); 

for (i = 1; i <= tests; i++) 

{ 

 

Start processing the next test xase. Clear the contents of arrays. 
 

  scanf("%d", &n); 

  a.clear(); v.clear(); 

 

Read the input array а. 
 

  for (j = 0; j < n; j++) 

  { 

    scanf("%d", &val); 

    a.push_back(val); 

  } 

 

Sort the input array. 
 

  sort(a.begin(), a.end()); 

 

Push the minimum and the maximum elements of the sequence a into array v. 
 



  v.push_back(a.back()); 

  v.push_front(a.front()); 

 

Initially set s = | v[1] – v[0] |. 
 

  s = abs(v.back() - v.front()); 

 

Delete these two elements from array a. 
 

  a.pop_back(); 

  a.pop_front(); 

 

While array a is not empty, we consider 4 cases and make the optimal choice 

among them using the greedy method. 
 

  while (!a.empty()) 

  { 

 

Declare an integer array mx of four elements. 
 

    mx[0] = abs(v.front() - a.front()); 

    mx[1] = abs(v.back() - a.front()); 

    mx[2] = abs(v.front() - a.back()); 

    mx[3] = abs(v.back() - a.back()); 

    rmax = *max_element(mx, mx + 4); 

 

    if (rmax == mx[0]) 

    { 

      v.push_front(a.front()); 

      a.pop_front(); 

    } else 

    if (rmax == mx[1]) 

    { 

      v.push_back(a.front()); 

      a.pop_front(); 

    } else 

    if (rmax == mx[2]) 

    { 

      v.push_front(a.back()); 

      a.pop_back(); 

    } else 

    { 

      v.push_back(a.back()); 

      a.pop_back(); 

    } 

    s += rmax; 

  } 

 

Print the answer. 
 

  printf("Case %d: %d\n", i, s); 

} 

 
 


